Application of a stationary Gaussian random process to describe a nondeterministic forcing function of a linear vibrating system is well studied and documented. Two algorithms, Karhunen-Loeve expansion method, and collocation technique for nonstationary and non-Gaussian forcing processes (narrow- or broadband, but not white noise) for linear dynamic systems are developed here. In the Karhunen-Loeve expansion method, the forcing random process autocovariance is decomposed using the well-known Karhunen-Loeve expansion. In the Karhunen-Loeve expansion, Galerkin projection (the weighted-residual method) and collocation technique (discretized covariance matrix) are used to get the eigenvalues and the eigenfunctions/eigenvectors of the autocovariance function, numerically. The steady-state and the transient response of a single-degree-of-freedom system for an exponential autocovariance (Gaussian random process) is obtained using three methods: 1) analytical, 2) semi-analytical and 3) numerical. In the semi-analytical method, the eigenvalues and the eigenfunctions ofthe exponential autocovariance function are obtained analytically by solving the Fredholm integral equation of the second kind and those definitions of the eigenfunctions and the eigenvalues are used to obtain the numerical response of the single-degree-of-freedom system. In the case of the steady-state response of the single-degree-of-freedom system, the convergence of the standard deviation of the response is shown to be a function ofthe number of Karhunen-Loeve expansion terms used in the expansion of the autocovariance of the forcing function. The transient analysis of the same single-degree-offreedom system is carried out using an exponentially modulated nonstationary process. Comparison of the proposed methods with respect to the analytical solutions are presented for both the stationary and the nonstationary Gaussian excitations. The steady-state responses as well as the transient responses for non-Gaussian random processes (uniform, triangular, and beta) for the same single-degree-of-freedom system are also presented.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Generalized linear random vibration analysis using autocovariance orthogonal decomposition


    Weitere Titelangaben:

    Verallgemeinerte linear-zufällige Schwingungsanalyse unter Verwendung der orthogonalen Autokovarianz-Zerlegung


    Beteiligte:

    Erschienen in:

    AIAA Journal ; 48 , 8 ; 1652-1661


    Erscheinungsdatum :

    2010


    Format / Umfang :

    10 Seiten, 14 Bilder, 21 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch





    Generalized Linear Random Vibration Analysis Using Autocovariance Orthogonal Decomposition

    Mulani, Sameer B. / Kapania, Rakesh K. / Scott, Karen M. L. | AIAA | 2010


    Generalized Linear Random Vibration Analysis Using Auto-Covariance Orthogonal Decomposition

    Mulani, Sameer / Kapania, Rakesh / Scott, Karen | AIAA | 2009


    Generalized Linear Random Vibration Analysis Using Auto-Covariance Orthogonal Decomposition

    Mulani, S. / Kapania, R. / Scott, K. | British Library Conference Proceedings | 2009


    Autocovariance Computer

    Meyers, J. F. / Hepner, T. E. | NTRS | 1984