According to color and geometric attributes of traffic signs in China, an efficient traffic sign recognition system applying to natural scenes is proposed in this paper. In this system, an improved image segmentation algorithm based on RGB color space is introduced to segment and extract possible regions of traffic signs in natural scene. Moreover, a two-level neural network is used to classify and recognize traffic signs, respectively. Outline features and moment invariants are used as inputs of classification neural network and recognition neural network, respectively. The experimental results demonstrate that the system is capable of achieving a good recognition for traffic signs in natural scene; furthermore, it has high robustness and broad applicability.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A traffic sign recognition system based on the neural network


    Weitere Titelangaben:

    Ein Verkehrszeichen-Erkennungssystem auf Basis eines neuronalen Netzwerkes


    Beteiligte:
    Wang, Jing (Autor:in) / Sun, Guangmin (Autor:in) / Xu, Lei (Autor:in) / Li, Gang (Autor:in)


    Erscheinungsdatum :

    2009


    Format / Umfang :

    4 Seiten, 7 Bilder, 5 Tabellen, 7 Quellen



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Traffic Sign Recognition Method Based on Convolutional Neural Network

    Li, Jitong / Chen, Yuguang / Lin, Honghao et al. | ASCE | 2024


    Road traffic sign recognition based on lightweight neural network

    Li, Le-yang / Yue, Qin / Luo, Rui-wen | SPIE | 2021


    German Traffic Sign Recognition Using Convolutional Neural Network

    Santosh, G V S Sree / Kumar, G Chaitanya / Sandeep, G et al. | IEEE | 2022



    Traffic Sign Recognition System (TSRS): SVM and Convolutional Neural Network

    Hasan, Nazmul / Anzum, Tanvir / Jahan, Nusrat | Springer Verlag | 2020