This paper describes a motion planning algorithm for a quadrotor helicopter flying autonomously without GPS. Without accurate global positioning, the vehicle's ability to localize itself varies across the environment, since different environmental features provide different degrees of localization. If the vehicle plans a path without regard to how well it can localize itself along that path, it runs the risk of becoming lost. We use the Belief Roadmap (BRM) algorithm (1), an information-space extension of the Probabilistic Roadmap algorithm, to plan vehicle trajectories that incorporate sensing. We show that the original BRM can be extended to use the Unscented Kalman Filter (UKF), and describe a sampling algorithm that minimizes the number of samples required to find a good path. Finally, we demonstrate the BRM path- planning algorithm on the helicopter, navigating in an indoor environment with a laser range-finder.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Planning in information space for a Quadrotor helicopter in a GPS-denied environment


    Beteiligte:
    He, Ruijie (Autor:in) / Prentice, S. (Autor:in) / Roy, N. (Autor:in)


    Erscheinungsdatum :

    2008


    Format / Umfang :

    7 Seiten, 18 Quellen



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Motion Planning for an Autonomous Helicopter in a GPS-denied Environment

    Potyagaylo, S. / Rand, O. / Kanza, Y. et al. | British Library Conference Proceedings | 2010


    Experiments in Fast, Autonomous, GPS-Denied Quadrotor Flight

    Mohta, Kartik / Sun, Ke / Liu, Sikang et al. | ArXiv | 2018

    Freier Zugriff


    Aerodynamic Characteristics of Quadrotor Helicopter

    Nguyen, Hung D. / Yu, Liu / Mori, Koichi | AIAA | 2017