An array-based leak location sensor has been developed and improved for application onboard spacecraft. Introduction of a diced piezoelectric element has permitted the successful utilization of lower frequency bands to perform the location. With this new device location across five integral stiffeners has been demonstrated, despite the stiffeners' strong frequency-dependent scattering. The approach uses spatial Fourier transformation of wideband plate wave signals to determine the direction of signal propagation, independent of the effects of dispersive multiple mode signal transport. The robustness of the measurement has been demonstrated, even across as many as five integral stiffeners. The results of an computational model of stiffener transmission supports the conclusions reached in the experimental results.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Leak location in spacecraft skin with ultrasonic arrays


    Weitere Titelangaben:

    Leckortung in Raumfahrzeughüllen mit Ultraschallgruppenstrahlern


    Beteiligte:
    Reusser, R. (Autor:in) / Holland, Steven D. (Autor:in) / Chimenti, D.E. (Autor:in) / Roberts, Ron (Autor:in) / Sulhoff, S. (Autor:in)


    Erscheinungsdatum :

    2008


    Format / Umfang :

    8 Seiten, 8 Bilder, 6 Quellen





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Datenträger


    Sprache :

    Englisch




    Spacecraft leak location using structure-borne noise

    Reusser, R.S. / Chimenti, D.E. / Holland, S.D. et al. | Tema Archiv | 2009


    Array-based acoustic leak location in spacecraft structures

    Reusser, R. / Holland, S.D. / Roberts, R.A. et al. | Tema Archiv | 2007


    An ultrasonic array sensor for spacecraft leak direction finding

    Holland, S.D. / Roberts, R. / Chimenti, D.E. et al. | Tema Archiv | 2006


    SALT: Spacecraft Air Leak Technology

    Wan, Alyssa / Robinson, Hannah / Wan, Stephanie et al. | IEEE | 2021