In this paper the authors have investigated the applicability of trajectory clustering for anomaly detection in a coastal surveillance scenario. Some weaknesses have been identified, which questions the usefulness of trajectory clustering in this type of setting. This paper has presented spline-based clustering as a potential extension to alleviate some of these problems. In spline-based clustering, clusters are represented by splines, which effectively compress the main trajectory of clusters, as well as possibly reducing the computational complexity coupled with matching. Finally, also some minor algorithmic problems are addressed as whole trajectory matching, creation trajectory being outrun, and splits occurring during creation.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Trajectory clustering and coastal surveillance


    Weitere Titelangaben:

    Fahrstraßen-Clusterbildung und Küstenüberwachung


    Beteiligte:
    Dahlbom, Anders (Autor:in) / Niklasson, Lars (Autor:in)


    Erscheinungsdatum :

    2007


    Format / Umfang :

    5 Seiten, 1 Bild, 7 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Moving object trajectory clustering method in intelligent surveillance video

    Jiuyue, H. / Chao, L. / Lei, G. et al. | British Library Online Contents | 2009




    Unmanned aerial vehicle for coastal surveillance

    CHOI MYUNG JIN / ROH JAE SANG / KIM DONG EON et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Sea Sentinel: Undersea Coastal Surveillance System

    Parrish, J. / Jensen, S. / Hollis, W. C. | British Library Online Contents | 1996