This paper presents an autonomous exploration method in an unknown environment that uses model predictive control (MPC)-based obstacle avoidance with local map building by onboard sensing. An onboard laser scanner is used to build an online map of obstacles around the vehicle with outstanding accuracy. This local map is combined with a real-time MPC algorithm that generates a safe vehicle path, using a cost function that penalizes the proximity to the nearest obstacle. The adjusted trajectory is then sent to a position tracking layer in the hierarchical unmanned aerial vehicle (UAV) avionics architecture. In a series of experiments using a Berkeley UAV, the proposed approach successfully guided the vehicle safely through the urban canyon.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Conflict-free navigation in unknown urban environments


    Beteiligte:
    Shim, D.H. (Autor:in) / Chung, Hoam (Autor:in) / Sastry, S.S. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2006


    Format / Umfang :

    7 Seiten, 10 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Visual Navigation in Unknown Environments

    Vidal Calleja, Teresa Alejandra | BASE | 2007

    Freier Zugriff



    Visual-UWB Navigation System for Unknown Environments

    Shi, Qin / Cui, Xiaowei / Li, Wei et al. | British Library Conference Proceedings | 2018


    Human-inspired Robot Navigation in Unknown Dynamic Environments

    Pradeep, Yazhini C. / Ming, Zhu / Rosario, Manuel Del et al. | British Library Conference Proceedings | 2016