A data fusion scheme for visual object identification and tracking by autonomous vehicles is recommended. Image motion vectors fields, color features, visual disparity depth information and camera motion parameters are fused together to identify the target 3D (Three-Dimensional) visual and dynamic features. A detailed description of the 3D target tracking algorithm using an extended Kalman Filter with a constant velocity dynamic model is presented. Performance of the proposed scheme is discussed through experimental results.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Camera motion and visual information fusion for 3D target tracking


    Weitere Titelangaben:

    Fusion der Kamerabewegung und der visuellen Informationen für die dreidimensionale Zielverfolgung


    Beteiligte:
    Jia, Zhen (Autor:in) / Balasuriya, Arjuna (Autor:in) / Challa, Subhash (Autor:in)


    Erscheinungsdatum :

    2004


    Format / Umfang :

    6 Seiten, 10 Quellen



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Visual target motion analysis using controlled camera motion

    Clark, James J. / Twum-Danso, Nanayaa | TIBKAT | 1994


    Motion priors for multiple target visual tracking

    Madrigal, F. | British Library Online Contents | 2015


    Multi-vessel target tracking with camera fusion for unmanned surface vehicles

    Jeong-Ho Park / Myung-Il Roh / Hye-Won Lee et al. | DOAJ | 2024

    Freier Zugriff

    Multi-vessel target tracking with camera fusion for unmanned surface vehicles

    Park, Jeong-Ho / Roh, Myung-Il / Lee, Hye-Won et al. | Elsevier | 2024

    Freier Zugriff

    Visual Target Tracking in the Presence of Unknown Observer Motion

    Williams, Stephen / Lu, Thomas | NTRS | 2009