This paper proposes a new recursive least squares adaptive algorithm, called the variable memory length (VML) algorithm. The new algorithm is robust in system identification problems in which the input power can be significantly reduced during operation. Most RLS-type algorithms tend to increase the error in the estimated weight vector in such situations. The VML algorithm keeps the mean square deviation of the weight unchanged during the absence of signal power. It should encounter application in systems such as automotive suspension fault detection and system identification using speech signals. In both cases, considerable periods of low input power during operation are common.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A recursive least squares algorithm robust to low-power excitation


    Beteiligte:
    Ludovico, C.S. (Autor:in) / Bermudez, J.C.M. (Autor:in)


    Erscheinungsdatum :

    2004


    Format / Umfang :

    4 Seiten, 11 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Robust recursive least squares algorithm for automotive suspension identification

    Ludovico, Charles Santos / Bermudez, José Carlos Moreira | SAE Technical Papers | 2005


    Recursive Least-Squares Filtering

    Zarchan, Paul / Musoff, Howard | AIAA | 2015


    Recursive Least-Squares Filtering

    Musoff, Howard / Zarchan, Paul | AIAA | 2009


    Recursive Least-Squares Filtering

    Musoff, Howard / Zarchan, Paul | AIAA | 2005


    Robust Vehicle Mass Estimation Using Recursive Least M-Squares Algorithm for Intelligent Vehicles

    Chor, Wai Tong / Tan, Chee Pin / Bakibillah, A. S. M. et al. | IEEE | 2024