Classification is an important part of the Level 1 Fusion problem. It provides necessary information to the user to make decisions about the object in question. In the military problem, this decision can be the difference between prosecution of a target and declaration as a noncombatant. A number of approaches use different sources of information address classification. Many of these techniques are probabilistic. Some are linguistic interpretations by expert analysis. These classifiers can provide different views of the same object. The key is to combine these disparate pieces of information, each with different levels of quality and/or confidence. We propose a technique to combine these various classifiers using the concept of evidence accrual. Information can affirm a class' hypothesis, refute it, or have no bearing upon it. Also, each source of evidence has a degree of quality or uncertainty about it. Finally, the sources may be represented as numeric or nonnumeric information. To address these issues, we utilized a set of decoupled fuzzy Kalman filters. This bank of filters, similar in nature to first-order observers, estimates the degree of evidence that each known class achieves. The paper outlines the development of our approach, its implementation to emulate a Bayesian classifier, and a set of examples.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Feature object extraction - a fuzzy logic approach for evidence accrual in the Level 1 Fusion classification problem


    Beteiligte:
    Stubberud, S. (Autor:in) / Pudwill, R. (Autor:in)


    Erscheinungsdatum :

    2003


    Format / Umfang :

    5 Seiten, 9 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    A Feature Level Fusion Approach for Object Classification

    Wender, S. / Dietmayer, K.C.J. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2007


    A Feature Level Fusion Approach for Object Classification

    Wender, Stefan / Dietmayer, Klaus C. J. | IEEE | 2007


    Adaptive UAS Route Planner Based Upon Evidence Accrual

    Kramer, Kathleen A. / Stubberud, Stephen C. | IEEE | 2019


    Adaptation for Evidence Accrual Applied to UAS Impact Assessment

    Kramer, Kathleen A. / Stubberud, Stephen C. | IEEE | 2018


    Feature-level sensor fusion

    Peli, T. Young, M. Knox, R. Ellis, K. K. | British Library Conference Proceedings | 1999