This paper presents a novel approach to the multi-vehicle simultaneous localisation and mapping (SLAM) problem that exploits the manner in which observations are fused into the global map of the environment to manage the computational complexity of the algorithm and improve the data association process. Rather than incorporating every observation directly into the global map of the environment, the constrained local submap filter (CLSF) relies on creating an independent, local submap of the features in the immediate vicinity of the vehicle. This local submap is then periodically fused into the global map of the environment. This representation is shown to reduce the computational complexity of maintaining the global map estimates as well as improving the data association process. This paper examines the prospect of applying the CLSF algorithm to the multi-vehicle SLAM problem.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards multi-vehicle simultaneous localisation and mapping


    Beteiligte:
    Williams, S.B. (Autor:in) / Dissanayake, G. (Autor:in) / Durrant-Whyte, H. (Autor:in)


    Erscheinungsdatum :

    2002


    Format / Umfang :

    6 Seiten, 16 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Autonomous Aerial Vehicle Localisation and Mapping

    Lazarus, Samuel / Tsourdos, Antonios / Aouf, Nabil et al. | AIAA | 2007


    Real-Time Simultaneous Localisation and Mapping with a Single Camera

    Davison, A. / IEEE | British Library Conference Proceedings | 2003



    Autonomous Aerial Vehicle Localisation and Mapping AIAA Paper

    Lazarus, S. / Tsourdos, A. / Aouf, N. et al. | British Library Conference Proceedings | 2007