The authors investigate the relationship between the local and global bending motions of fluid conveying pipes on an elastic foundation. The local approach refers to an infinite pipe without taking into account its finite ends, while in the global approach the authors consider a pipe of finite length with a given set of boundary conditions. Several kinds of propagating disturbances are identified from the dispersion relation, namely evanescent, neutral and unstable waves. As the length of the pipe is increased, the global criterion for instability is found to coincide with local neutrality, whereby a local harmonic forcing only generates neutral waves. For sets of boundary conditions that give rise only to static instabilities, the criterion for global instability of the long pipe is that static neutral waves exist. Conversely, for sets of boundary conditions that allow dynamic instabilities, the criterion for global instability of the long pipe corresponds to that for the existence of neutral waves of finite nonzero frequency. These results are discussed in relation with the work of Kulikovskii and other similar approaches in hydrodynamic stability theory.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Local and global instability of fluid-conveying pipes on elastic foundations


    Weitere Titelangaben:

    Lokale und globale Instabilität durchströmter Rohrleitungen auf elastischem Untergrund


    Beteiligte:
    Doare, O. (Autor:in) / Langre, E. de (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2002


    Format / Umfang :

    14 Seiten, 11 Bilder, 29 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch






    Bursting oscillation of simply supported fluid-conveying pipes

    Li, H.Q. / Zhang, X.F. / Jiang, W.A. et al. | Taylor & Francis Verlag | 2024



    A NOTE ON THE STABILITY OF PIPES CONVEYING FLUID

    Denisov, K.P. | Online Contents | 2001