In this paper, a method to detect lanes and obstacles from the images captured by a CCD camera fitted in an automobile is proposed, and a new terminology, 'Moving Window', is defined. Processing the input dynamic images in real time can cause quite a few constraints in terms of hardware. In order to overcome these problems and detect lanes and obstacles in real time using the images, the optimal size of moving window is determined, based upon road conditions and automobile states. The real time detection is made possible through the technique. For each image frame, the moving window is moved in a predicted direction, the accuracy of which is improved by the Kalman filter estimation. The feasibility of the proposed algorithm is demonstrated thorugh the simulated experiments of freeway driving.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The detection of lanes and obstacles in real time using optimal moving window


    Weitere Titelangaben:

    Fahrspurerkennung und Hinderniserkennung in Echtzeit mit Hilfe einer CCD-Kamera


    Beteiligte:
    Choi, S.Y. (Autor:in) / Lee, M. (Autor:in) / Song, C.K. (Autor:in) / Choi, H.H. (Autor:in)


    Erscheinungsdatum :

    2001


    Format / Umfang :

    12 Seiten, 29 Bilder, 3 Tabellen, 20 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    COLLISION-FREE DYNAMIC WINDOW APPROACH FOR MOVING OBSTACLES

    XI ZHIMIN | Europäisches Patentamt | 2023

    Freier Zugriff

    Optimal Real-Time Trajectory Planning of Autonomous Ground Vehicles for Overtaking Moving Obstacles

    Majidi, Majid / Arab, Majid / Tavoosi, Vahid | British Library Conference Proceedings | 2017



    Joint Instance Segmentation of Obstacles and Lanes Using Convolutional Neural Networks

    Cabrera Lo Bianco, Leonardo / Al-Kaff, Abdulla / Beltrán, Jorge et al. | Springer Verlag | 2019


    Joint Instance Segmentation of Obstacles and Lanes Using Convolutional Neural Networks

    Bianco, Leonardo Cabrera Lo / Al-Kaff, Abdulla / Beltrán, Jorge et al. | TIBKAT | 2020