A method is proposed for the real-time detection of DC-link short-circuit faults in DC transit systems. The discrete wavelet transform is implemented to detect any surges in the DC third-rail current waveform. In the event of a surge the wavelet transform extracts a feature vector from the current waveform and feeds it to a self-organising neural network. The neural network determines whether the feature vector belongs to a normal or a fault current surge.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time detection using wavelet transform and neural network of short-circuit faults within a train in DC transit systems


    Beteiligte:
    Chang, C.S. (Autor:in) / Kumar, S. (Autor:in) / Liu, B. (Autor:in) / Khambadkone, A. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2001


    Format / Umfang :

    6 Seiten, 13 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch





    Prediction of Urban Rail Transit Train Door Faults Based on FOA-BP Neural Network Model

    WEN Kaiyue / QIU Weibin / DING Xianze et al. | DOAJ | 2025

    Freier Zugriff

    A real-time train holding model for rail transit systems

    Puong, André, 1977- | DSpace@MIT | 2001

    Freier Zugriff

    Detection of Inter Turn Short Circuit Faults in Induction Motor Using Artificial Neural Network

    Menshawy A. Mohamed / Essam Mohamed / Al-Attar A. Mohamed et al. | DOAJ | 2020

    Freier Zugriff

    Detection of Inter Turn Short Circuit Faults in Induction Motor using Artificial Neural Network

    Mohamed, Menshawy / Mohamed, Essam / Mohamed, Al-Attar et al. | IEEE | 2020