To detect and to isolate faults by classification approach the residual-based pattern recognition approach was used. The classification was performed by a radial basis function neural net. The nodes of the net were trained by the unsupervised learning method. If there is no faults than the distribution of feature vectors within regions of clusters is homogenous. As a change in the homogeneity in the feature space have been detected a new fault cluster is introduced. The fault diagnosis was applied to a autonomous mobile vehicle driven by separate DC (Direct Current) motors for each wheel. The possible faults were defects in the sensors, in the actuators, in the vehicle and in the environment. As an application sensor defects in measuring the velocity of the driven wheels and in the motor voltage measurement were simulated.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Diagnosing priori unknown faults by radial basis function neural network


    Weitere Titelangaben:

    Diagnose vorher unbekannter Fehler mit dem neuronalen Radialbasisfunktion-Netz


    Beteiligte:
    Dalmi, I. (Autor:in) / Kovacs, L. (Autor:in) / Lorant, I. (Autor:in) / Terstyanszky, G. (Autor:in)


    Erscheinungsdatum :

    2000


    Format / Umfang :

    5 Seiten, 10 Bilder, 6 Quellen


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    DIAGNOSING A PRIORI UNKNOWN FAULTS BY A MODIFIED SUPERVISED-UNSUPERVISED ALGORITHM

    Terstyanszky, G. Z. / Kovacs, L. / European Union Control Association et al. | British Library Conference Proceedings | 2001


    Construction of fuzzy radial basis function neural network model for diagnosing prostate cancer

    Abadi, Agus Maman / Wutsqa, Dhoriva Urwatul / Ningsih, Nurlia | BASE | 2021

    Freier Zugriff

    Radial Basis Function Artificial Neural-Network-Inspired Numerical Solver

    Wilkinson, Matthew C. / Meade, Andrew J. | AIAA | 2016


    Radial Basis Function Neural Network Based on Ant Colony Clustering

    Fangfang, W. / Yinliang, Z. | British Library Online Contents | 2006


    Diagnosing electronic faults

    Bonnick,A. | Kraftfahrwesen | 1991