Protection from the potentially damaging effects of shock loading is a common design requirement for diverse mechanical structures ranging from shock accelerometers to spacecraft. High damping viscoelastic materials are employed in the design of geometrically complex, impact-absorbent components. Since shock transients are characterized by a broad frequency spectrum, it is imperative to properly model frequency spectrum, it is imperative to properly model frequency dependence of material parameters over a wide frequency range. The Anelastic Displacement Fields (ADF) method is employed to model frequency-dependence within a finite element framework. Axisysmetric, ADF finite elements are developed to address modeling of geometrically complex structures. These finite elements are then used to model shock propagation and absorption through viscoelastic structures. The model predictions are verified against longitudinal wave propagation experimental data and theory.
Modeling of shock propagation and attenuation in viscoelastic materials
2000
11 Seiten, 30 Quellen
Aufsatz (Konferenz)
Englisch
Modeling of Frequency Dependent Properties of Viscoelastic Materials Subjected to Shock Loads
British Library Conference Proceedings | 2000
|