Target tracking is an important issue in underwater surveillance systems. The tracking systems in sea warfare utilize passive sonar to have bearing only information contaminated with noise, which is assumed here as additive zero mean Gaussian noise. In underwater warfare two dimensional target motion analysis is familiar. The Kalman Filter is used to obtain the target parameters with the help of bearing data coming from sensor. The error in target parameters of velocity, range, heading and bearing are estimated. For some of the scenarios the errors are unacceptable to real time combat systems. Hence alternative methods are surveyed and ANN (Artificial Neural Network) is coupled with Kalman filter to reduce the creeping errors in the solution in spite of Kalman adaptive filters exist. The network selected for this purpose is backpropagation neural network. The network is pre-trained using different inputs to predict the said target parameters. The simulation results are presented and comparative studies are conducted. The ANN provides the adaptive capability the filter model needs.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Artificial neural network embedded Kalman Filter bearing only passive target tracking


    Weitere Titelangaben:

    Zielverfolgung im Wasser unter Verwendung eines Kalman-Filters und eines neuronalen Netzwerks


    Beteiligte:


    Erscheinungsdatum :

    1999


    Format / Umfang :

    4 Seiten, 6 Bilder, 8 Quellen


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Iterated Unscented Kalman Filter for Passive Target Tracking

    Zhan, Ronghui / Wan, Jianwei | IEEE | 2007



    Unscented Kalman Filter and Gauss-Hermite Kalman Filter for Range-Bearing Target Tracking

    Barragán, Gabriel / Infante, Saba / Hernández, Aracelis | Springer Verlag | 2021



    Kalman filter design for target tracking

    Faruqi, F. A. / Davis, R. C. | IEEE | 1980