This paper describes a fuzzy model that learns automotive diagnostic knowledge through machine learning techniques. The fuzzy model contains the algorithms for automatically generating fuzzy rules and optimizing fuzzy membership functions. The fuzzy model has been implemented to detect a vacuum leak in the electronic engine controller (EEC) as part of the end-of-line test at automotive assembly plants. The implemented system has been tested extensively, and its performance is presented.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A fuzzy system for automotive fault diagnosis: fast rule generation and self-tuning


    Beteiligte:
    Yi Lu (Autor:in) / Tie Qi Chen (Autor:in) / Hamilton, B. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2000


    Format / Umfang :

    10 Seiten, 17 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    A Fuzzy System for Automotive Fault Diagnosis

    Lu, Y. / Chen, T.-Q. / Hamilton, B. et al. | British Library Conference Proceedings | 1998


    A fuzzy system for automotive fault diagnosis

    Lu,Y. / Chen,T.Q. / Hamilton,B. et al. | Kraftfahrwesen | 1998


    A Fuzzy System for Automotive Fault Diagnosis

    Hamilton, Brennan / Chen, Tie-Qi / Lu, Yi | SAE Technical Papers | 1998



    Fault Diagnosis of Emission Control System of Automotive Engines Via Fuzzy ARTMAP Neural Network

    De Miguel, L. J. / Peran, J. R. / International Federation of Automatic Control | British Library Conference Proceedings | 1998