Object detection and instance segmentation networks are improved to realise the accurate detection and instance segmentation of rotated warship objects in satellite remote sensing images. An adaptive threshold generation scheme and segmentation annotation information are applied used to improve a rotated label generation method to obtain high-precision rotated object labels. The original RPN is combined with the bbox head with improved output dimensions to obtain a rotated RPN to generate rotated region proposals. Rotated RoIAlign is used to solve the problem of mismatch between rotated region proposals and dimensions of subsequent feature maps. A rotated detection frame is used to correct the output of the network, which alleviates false detection and omission. In addition, this removes the pixels outside the rotated detection frame that are incorrectly classified as objects. The improved networks can achieve high-precision detection and instance segmentation of rotated warship objects, and the methods used in this study have good generalisability.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improvement of rotated object detection and instance segmentation in warship satellite remote sensing images based on convolutional neural network


    Weitere Titelangaben:

    SHIPS AND OFFSHORE STRUCTURES
    D. KAIFA ET AL.


    Beteiligte:
    Kaifa, Ding (Autor:in) / Yang, Yang (Autor:in) / Jianwu, Mu (Autor:in) / Kaixuan, Hu (Autor:in)

    Erschienen in:

    Ships and Offshore Structures ; 19 , 8 ; 1146-1156


    Erscheinungsdatum :

    02.08.2024


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Ship object detection in remote sensing images using convolutional neural networks

    Huang, Jie / Jiang, Zhiguo / Zhang, Haopeng et al. | British Library Online Contents | 2017


    Learning power Gaussian modeling loss for dense rotated object detection in remote sensing images

    LI, Yang / WANG, Haining / FANG, Yuqiang et al. | Elsevier | 2023

    Freier Zugriff

    Aircraft Detection in Remote Sensing Images Based on Deep Convolutional Neural Network

    Li, Yibo / Zhang, Senyue / Zhao, Jingfei et al. | IEEE | 2017


    Satellite Components Detection from Optical Images Based on Instance Segmentation Networks

    Chen, Yulang / Gao, Jingmin / Zhang, Yang et al. | AIAA | 2021