We investigate the efficacy of the Extreme Gradient boosting (XGBoost) machine learning technique in desktop vessel valuation and compare it to benchmark models consisting of a LASSO regression, a Generalized Additive Model (GAM) and a Generalized Linear Model (GLM). Our data consists of of 1880 sale and purchase transactions for Handysize bulkers between January 1996 and September 2019. Using vessel-specific and market variables, we find that the XGBoost algorithm outperforms the GAM approach in its ability to model complex non-linear relationships between multiple variables. When fitting the XGBoost model, we find that vessel age, timecharter rates and fuel efficiency are the most important variables. Our findings are important for investors, shipowners and ship financiers in the maritime industry.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Second-hand vessel valuation: an extreme gradient boosting approach


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    02.01.2023


    Format / Umfang :

    18 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Analyzing Accident Injury Severity via an Extreme Gradient Boosting (XGBoost) Model

    Shubo Wu / Quan Yuan / Zhongwei Yan et al. | DOAJ | 2021

    Freier Zugriff

    Extreme Gradient Boosting Machine Learning Algorithm For Safe Auto Insurance Operations

    Dhieb, Najmeddine / Ghazzai, Hakim / Besbes, Hichem et al. | IEEE | 2019


    Predicting the Future Signalization of Traffic-Actuated Signals Using Extreme Gradient Boosting

    Heckmann, Kevin / Budde, Jannik / Schneegans, Lena Elisa et al. | Transportation Research Record | 2024



    Traffic Incident Clearance Time Prediction and Influencing Factor Analysis Using Extreme Gradient Boosting Model

    Jinjun Tang / Lanlan Zheng / Chunyang Han et al. | DOAJ | 2020

    Freier Zugriff