This study investigates the frequency and injury severity of pedestrian crashes across Texas using tree-based machine learning models. Ten years of police records are used along with roadway inventory and other sources to map 78,000 + pedestrian crashes over 700,000 road segments. Methods like random forests (RF), gradient boosting (LightGBM and XGBoost), and Bayesian additive regression trees (XBART) are applied and compared. The crash frequency models indicate that highway design variables have significant impacts on crash frequencies. Severity models show how higher speed limits significantly increase the likelihood of pedestrian fatalities and severe injuries, and how intoxication (of drivers or pedestrians) lead to more severe injuries. The 4 specifications perform similarly in predicting crash counts, with LightGBM having much faster computing times. Across the crash-severity models, XBART achieved greater precision values but with significantly higher computating times.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting pedestrian crash occurrence and injury severity in Texas using tree-based machine learning models


    Weitere Titelangaben:

    TRANSPORTATION PLANNING AND TECHNOLOGY
    B. ZHAO ET AL.


    Beteiligte:
    Zhao, Bo (Autor:in) / Zuniga-Garcia, Natalia (Autor:in) / Xing, Lu (Autor:in) / Kockelman, Kara M. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    16.11.2024


    Format / Umfang :

    22 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Predicting crash occurrence at intersections in Texas: an opportunity for machine learning

    Charm, Theodore / Wang, Haoqi / Zuniga-Garcia, Natalia et al. | Taylor & Francis Verlag | 2024


    Analysis of vehicle pedestrian crash severity using advanced machine learning techniques

    Siyab Ul Arifeen / Mujahid Ali / Elżbieta Macioszek | DOAJ | 2023

    Freier Zugriff