Port congestion is an obstacle to smooth energy supply chain management. This research identifies and quantifies the economic implications of congestion in a real-time framework, in which the temporal and geospatial port congestion status is analysed using the vessel tracking information captured by satellites, the Automatic Identification System. A Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is proposed to automatically identify vessel clusters at ports and quantify port turnaround time, and thus real-time port congestion status. A framework is then outlined to analyze the economic implications of congestion for various stakeholders in the system. A case study is conducted on Indian LPG ports, where congestion frequently occurs. The analysis has important implications for the industrial participants engaged in energy transportation to assess the impact, and for policymakers in a better network design.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Identifying port congestion and evaluating its impact on maritime logistics


    Weitere Titelangaben:

    X. BAI ET AL.
    MARITIME POLICY & MANAGEMENT


    Beteiligte:
    Bai, Xiwen (Autor:in) / Jia, Haiying (Autor:in) / Xu, Mingqi (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    02.04.2024


    Format / Umfang :

    18 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Addressing special challenges in maritime and port logistics

    Cariou, Pierre / Ferrari, Claudio / Parola, Francesco | Taylor & Francis Verlag | 2014


    Risks and Reliability Assessment in Maritime Port Logistics

    Roșca, Eugen ;Raicu, Serban ;Roșca, Mircea | Trans Tech Publications | 2014