This paper reveals the spatial-temporal patterns of urban mobility by exploring massive mobile phone data based on the nonnegative tensor decomposition method. First, human mobility data with the trip origin, destination, and timestamp are formulated to a three-way tensor. Second, the nonnegative Tucker decomposition model is used to reconstruct the core tensor and the factor matrix to extract hidden structures. Third, the model is efficiently estimated using the hierarchical alternating least square nonnegative tensor decomposition (NTD) algorithm with the nonnegative matrix factorization (NMF) initialization. Using the one-week data of over 4 million cell phone users in Hangzhou, China, we evaluate the performance of the proposed method and explore how different initialization strategies affect tensor decomposition performance. The results show that the NMF initialization strategy can speed up the convergence process and achieve a better fit and more stable results than random initialization in tensor decomposition.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Nonnegative tensor decomposition for urban mobility analysis and applications with mobile phone data


    Beteiligte:
    Wang, Dianhai (Autor:in) / Cai, Zhengyi (Autor:in) / Cui, Yanlei (Autor:in) / Chen, Xiqun (Michael) (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    04.03.2022


    Format / Umfang :

    25 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Tensor Decomposition for Spatiotemporal Mobility Pattern Learning with Mobile Phone Data

    Gong, Suxia / Saadi, Ismaïl / Teller, Jacques et al. | Transportation Research Record | 2024


    How mobile phone handovers reflect urban mobility: A simulation study

    Derrmann, Thierry / Frank, Raphael / Engel, Thomas et al. | IEEE | 2017


    Identification of Aggregate Urban Mobility Patterns of Nonregular Travellers from Mobile Phone Data

    Manon Seppecher / Ludovic Leclercq / Angelo Furno et al. | DOAJ | 2023

    Freier Zugriff


    Analysis of Mobile Phone Data for Deriving City Mobility Patterns

    Secchi, Piercesare / Vantini, Simone / Zanini, Paolo | Springer Verlag | 2017