This manuscript presents an Adam optimization-based Deep Reinforcement Learning model for Mixed Traffic Flow control (ADRL-MTF), so as to guide Connected and Autonomous vehicle’s (CAV) longitudinal trajectory on a typical urban roadway with signal-controlled intersections. Two improvements are made when compared with prior literatures. First, the common assumptions to simplify the problem solving, such as dividing a vehicle trajectory into several segments with constant acceleration/deceleration, are avoided, to improve the modeling realism. Second, built on the efficient Adam Optimization and Deep Q-Learning, the proposed model avoids the enumeration of states and actions, and is computational efficient and suitable for real time applications. The mixed traffic flow dynamic is firstly formulated as a finite Markov decision process (MDP) model. Due to the discretization of time, space and speed, this MDP model becomes high-dimensional in state, and is very challenging to solve. We then propose a temporal difference-based deep reinforcement learning approach, with -greedy for exploration-exploitation balance. Two neural networks are developed to replace the traditional Q function and generate the targets in the Q-learning update. These two neural networks are trained by the Adam optimization algorithm, which extends stochastic gradient descent and considers the second moments of the gradients, and is thus highly computational efficient and has lower memory requirements. The proposed model is shown to reduce fuel consumption by 7.8%, which outperforms a prior benchmark model based on Monte Carlo Tree Search. The model’s runtime efficiency and stability are tested, and the sensitivity analysis is also performed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Online longitudinal trajectory planning for connected and autonomous vehicles in mixed traffic flow with deep reinforcement learning approach


    Beteiligte:
    Cheng, Yanqiu (Autor:in) / Hu, Xianbiao (Autor:in) / Chen, Kuanmin (Autor:in) / Yu, Xinlian (Autor:in) / Luo, Yulong (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2023-05-04


    Format / Umfang :

    15 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt






    A Trajectory Simulation Approach for Autonomous Vehicles Path Planning using Deep Reinforcement Learning

    de Oliveira Lima, Jean Phelipe / Oliveira, Raimundo Correa de / Costa, Cleinaldo de Almeida | BASE | 2020

    Freier Zugriff

    Trajectory Planning for Autonomous Vehicles Using Hierarchical Reinforcement Learning

    Naveed, Kaleb Ben / Qiao, Zhiqian / Dolan, John M. | IEEE | 2021


    Trajectory Planning for Connected and Autonomous Vehicles at Freeway Work Zones under Mixed Traffic Environment

    Ma, Wanjing / Chen, Benwei / Yu, Chunhui et al. | Transportation Research Record | 2022