When older and more recent datasets have large and small numbers of observations, respectively, then discrete choice modellers must decide whether to utilise both datasets with model updating (transfer scaling, joint context estimation, Bayesian updating, and combined transfer estimation) or only the more recent dataset. This study investigates the case when the data collection time points and the number of observations from each time point differ. Bootstrapping was applied to commuting mode choice models utilising datasets from Nagoya, Japan. The following criteria are proposed: (1) when the more recent time point has a large number of observations, use only the more recent data; (2) when the more recent time point has a smaller number of observations, use transfer scaling or joint context estimation based on the differences in the contexts of the two time points and the sample size from the older time point.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Criteria for selecting model updating methods for better temporal transferability


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.01.2020


    Format / Umfang :

    23 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt