Each vessel has its own way of sailing in the port region. Any autonomous vessel navigating such a scene should be able to predict the trajectories of surrounding ships and adjust its behaviour to avoid a collision. In this paper, combined with the sequence prediction method, a Long Short-Term Memory (LSTM) model is proposed to predict the trajectories of the vessels. The ground-truth Automatic Identification System (AIS) data in the port of Tianjin, China are used to train and test the proposed model. The experimental results prove that our model can predict ship trajectories accurately, and it is applicable to the autonomous navigation system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A model for vessel trajectory prediction based on long short-term memory neural network


    Beteiligte:
    Tang, Huang (Autor:in) / Yin, Yong (Autor:in) / Shen, Helong (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    04.05.2022


    Format / Umfang :

    10 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    Trajectory Prediction of Urban Rail Transit Based on Long Short-Term Memory Network

    He, Yijuan / Lv, Jidong / Zhang, Daqian et al. | IEEE | 2021


    Aircraft Trajectory Prediction Using Deep Long Short-Term Memory Networks

    Zhao, Ziyu / Zeng, Weili / Quan, Zhibin et al. | ASCE | 2019



    Short-Term Passenger Flow Prediction Using a Bus Network Graph Convolutional Long Short-Term Memory Neural Network Model

    Baghbani, Asiye / Bouguila, Nizar / Patterson, Zachary | Transportation Research Record | 2022

    Freier Zugriff