We propose a methodology for optimization of service headway and stop spacing along a low-demand bus route that minimizes operator and user costs. This study develops analytical cost models that are representative of low-demand routes by using negative binomial distribution for passenger demand for boarding and alighting pattern to estimate the probability of stopping and both random and planned arrival of passengers are considered to estimate the waiting time. Pareto optimal solutions obtained using multi-objective evolutionary algorithm, NSGA-II indicate that optimal values of headway and stop spacing are underestimated if optimized based on assumptions typical of high-demand routes which is passenger demand for boarding and alighting at bus stops randomly following a Poisson process. With the aid of the study methodology, transit planners will be able to improve the service utilization and passenger accessibility along an under-performing low demand routes by recommending minimal modifications to the existing route and bus schedule.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimization of headway and bus stop spacing for low demand bus routes


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    17.11.2023


    Format / Umfang :

    26 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Headway or spacing of trains

    Turner, Walter V. | Engineering Index Backfile | 1918


    Optimal stop spacing and headway of congested transit system considering realistic wait times

    Chien, Steven / Byun, Jongho / Bladikas, Athanassios | Taylor & Francis Verlag | 2010



    Automatic Headway Control - An Automatic Vehicle Spacing System

    Crow, Joseph W. / Parker, Robert H. | SAE Technical Papers | 1970


    Optimization of bus stop spacing for on-demand public bus service

    Zhang, Jie / Wang, David Z.W. / Meng, Meng | Taylor & Francis Verlag | 2020