The methods used with data from a single source are inadequate to the challenge of modelling choice behaviour with data from multiple sources. Two distinct formulations, namely the non-normalised nested logit and utility-maximising nested logit models, have been proposed to estimate discrete choice models with mixed revealed preference and stated preference data, in which each data type has the multinomial logit or nested logit form. The article uses two alternative nested logit model formulations to demonstrate how to correctly set up tree structures for estimating nested logit models with mixed preference data. This article provides formulae for recovering correct utility function, dissimilarity and scale parameter estimates. Estimations and correction procedures are empirically illustrated and can be applied to other nested logit models with multiple data sources.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Alternative tree structures for estimating nested logit models with mixed preference data


    Beteiligte:
    Wen, Chieh-Hua (Autor:in)

    Erschienen in:

    Transportmetrica ; 6 , 4 ; 291-309


    Erscheinungsdatum :

    01.10.2010




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Estimating Nested Logit Models with Censored Data

    Newman, Jeffrey P. / Ferguson, Mark E. / Garrow, Laurie A. | Transportation Research Record | 2013


    Estimating Nested Logit Models with Censored Data

    Newman, Jeffrey P | Online Contents | 2013


    Estimating “tree” logit models

    Daly, Andrew | Elsevier | 1986


    Efficiently Estimating Nested Logit Models with Choice-Based Samples

    Koppelman, Frank S. / Garrow, Laurie A. | Transportation Research Record | 2005