This paper presents the TRSA-EMD-GAN ship motion attitude prediction model, which utilizes self-attention and generative adversarial networks (GAN) to accurately predict ship motion attitudes. The TRSA mechanism based on time residuals is incorporated into the model to capture the different influences of various attitude points on the prediction and their temporal relationships by using a time mask. Moreover, the model employs a variation mode decomposition generative adversarial network (VMD-GAN) for ship motion attitude prediction through feature fusion. In the VMD-GAN model, VMD is combined with a GRU neural network as the generator, while a convolutional neural network serves as the discriminator. Simulation experiments confirm the effectiveness of the TRSA-VMD-GAN model in predicting ship motion attitudes, resulting in reduced prediction errors and improved accuracy and efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A deep learning combined prediction model for prediction of ship motion attitude in real conditions


    Weitere Titelangaben:

    SHIPS AND OFFSHORE STRUCTURES
    B. ZHANG ET AL.


    Beteiligte:
    Zhang, Biao (Autor:in) / Wang, Sheng (Autor:in) / Ji, Shaopei (Autor:in)

    Erschienen in:

    Ships and Offshore Structures ; 19 , 11 ; 1868-1883


    Erscheinungsdatum :

    01.11.2024


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Strong-adaptability ship future motion attitude prediction method and system based on real sea conditions

    CHEN ZHANYANG / LIU XINGYUN / MA ZHAO et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Ship motion attitude prediction method based on multiple combinations

    HE XIANDENG / LIU XINGYUAN / YI YUNHUI et al. | Europäisches Patentamt | 2023

    Freier Zugriff


    MULTI-SHIP MOTION ATTITUDE REAL-TIME MONITORING SYSTEM

    ZAN YINGFEI / YUAN LIHAO / HAN DUANFENG | Europäisches Patentamt | 2023

    Freier Zugriff

    A deep learning method for the prediction of 6-DoF ship motions in real conditions

    Zhang, Mingyang / Taimuri, Ghalib / Zhang, Jinfen et al. | SAGE Publications | 2023

    Freier Zugriff