In this paper, an efficient Machine Learning-based Legendre wavelet method (ML-LWM) is utilised to estimate the parameters in ship damping models. Damping is critical for the roll motion response of a ship in waves. To the best of our knowledge, there is no Legendre Wavelet Method (LWM) has been reported to estimate the damping and restoring moments in ship dynamics models. LWM is applied to estimate roll angle, damping coefficients and restoring moments. Some numerical examples are given to demonstrate the validity and applicability of the proposed ML-LWM. The ML-LWM results are compared with the results obtained by the Homotopy Perturbation Method (HPM). Also, the proposed results are validated with the experimental data. Satisfactory agreement with experimental and HPM is noticed. The efficiency of the proposed wavelet method is confirmed by CPU runtime.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine learning-based wavelet method for estimating the parameters in ship roll damping models using Legendre polynomials


    Beteiligte:
    Swaminathan, G. (Autor:in) / Hariharan, G. (Autor:in) / Selvaganesan, V. (Autor:in) / Ayyangar, V. B. S. (Autor:in)

    Erschienen in:

    Ships and Offshore Structures ; 18 , 12 ; 1668-1678


    Erscheinungsdatum :

    02.12.2023


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    Nonlinear models of ship roll damping

    Bass, D.W. / Haddara, M.R. | Tema Archiv | 1988



    Ship roll damping using the rudder and stabilising fins

    Roberts, G. N. / International Federation of Automatic Control | British Library Conference Proceedings | 1992