This study explores how to reduce the cost of prediction as much as possible while ensuring the prediction accuracy of a real-time crash risk model. The extreme gradient enhancement (XGBoost) algorithm was used to predict the crash risk of autonomous vehicles in different sections of highway. The results show that the prediction performance of the model is the best when the threshold value is 0.05. Choosing two variables to predict can ensure high accuracy and simultaneously reduce the cost of prediction when the accuracy of crash risk prediction of the three sections can reach 73%, 62%, and 70%. However, when only one variable can be selected due to sensor or system failure, the speed difference between the takeover car and the front car can be chosen to achieve the greatest benefit. These findings could provide a reference for technicians to design safer and more economical autonomous vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Studying the predictability of crash risk caused by manual takeover of autonomous vehicles in mixed traffic flow


    Weitere Titelangaben:

    Q. LIU ET AL.
    TRANSPORTATION LETTERS


    Beteiligte:
    Liu, Qingchao (Autor:in) / Yu, Ruohan (Autor:in) / Cai, Yingfeng (Autor:in) / Chen, Long (Autor:in)

    Erschienen in:

    Transportation Letters ; 16 , 10 ; 1205-1223


    Erscheinungsdatum :

    25.11.2024


    Format / Umfang :

    19 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Research on Mixed Traffic Flow Model of Autonomous-Manual Driving Vehicles

    Ren, You / Wang, Liangzhe / Yan, Guan et al. | British Library Conference Proceedings | 2020


    Research on Mixed Traffic Flow Model of Autonomous-Manual Driving Vehicles

    Yan, Guan / Shan, Hongmei / Lin, Huiying et al. | SAE Technical Papers | 2020