Abstract Automatic image categorization is a challenging computer vision problem, to which Multiple-instance Learning (MIL) has emerged as a promising approach. Typical current MIL schemes rely on binary one-versus-all classification, even for inherently multi-class problems. There are a few drawbacks with binary MIL when applied to a multi-class classification problem. This paper describes Multi-class Multiple-Instance Learning (McMIL) to image categorization that bypasses the necessity of constructing a series of binary classifiers. We analyze McMIL in depth to show why it is advantageous over binary MIL when strong target concept overlaps exist among the classes. We systematically valuate McMIL using two challenging image databases, and compare it with state-of-the-art binary MIL approaches. The McMIL achieves competitive classification accuracy, robustness to labeling noise, and effectiveness in capturing the target concepts using smaller amount of training data. We show that the learned target concepts from McMIL conform to human interpretation of the images.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evaluating Multi-class Multiple-Instance Learning for Image Categorization


    Beteiligte:
    Xu, Xinyu (Autor:in) / Li, Baoxin (Autor:in)


    Erscheinungsdatum :

    01.01.2007


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    On Taxonomies for Multi-class Image Categorization

    Binder, A. / Müller, K. R. / Kawanabe, M. | British Library Online Contents | 2012


    Predicting Adverse Events and their Precursors in Aviation Using Multi-Class Multiple-Instance Learning

    Bleu-Laine, Marc-Henri / Puranik, Tejas G. / Mavris, Dimitri N. et al. | AIAA | 2021


    Predicting Adverse Events and their Precursors in Aviation Using Multi-Class Multiple-Instance Learning

    Marc-henri Bleu-laine / Tejas G Puranik / Dimitri N Mavris et al. | NTRS


    PREDICTING ADVERSE EVENTS AND THEIR PRECURSORS IN AVIATION USING MULTI-CLASS MULTIPLE-INSTANCE LEARNING

    Bleu-Laine, Marc-Henri / Puranik, Tejas G. / Mavris, Dimitri N. et al. | TIBKAT | 2021


    Generalized Dictionaries for Multiple Instance Learning

    Shrivastava, A. / Patel, V. M. / Pillai, J. K. et al. | British Library Online Contents | 2015