Marine growth impacts the stability and integrity of offshore structures, while simultaneously preventing inspection procedures. In consequence, companies need to employ specialists that manually assess each impacted part of the structure. Due to harsh sub-sea environments, acquiring large quantities of quality underwater data becomes difficult. To mitigate these challenges a new data augmentation algorithm is proposed that generates new images by performing localized crops on regions of interest from the original data, expanding the total size of the dataset approximately 6 times. This research also proposes a learning-based algorithm capable of automatically delineating marine growth in underwater images, achieving up to 0.389 IoU and 0.508 Dice Loss. Advances in this area contribute for reducing the manual labour necessary to schedule maintenance operations in man-made submerged structures, while increasing the reliability and automation of the process.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Artificial Intelligence for Automated Marine Growth Segmentation


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Marques, Lino (Herausgeber:in) / Santos, Cristina (Herausgeber:in) / Lima, José Luís (Herausgeber:in) / Tardioli, Danilo (Herausgeber:in) / Ferre, Manuel (Herausgeber:in) / Carvalho, João (Autor:in) / Leite, Pedro Nuno (Autor:in) / Mina, João (Autor:in) / Pinho, Lourenço (Autor:in) / Gonçalves, Eduardo P. (Autor:in)

    Kongress:

    Iberian Robotics conference ; 2023 ; Coimbra, Portugal November 22, 2023 - November 24, 2023



    Erscheinungsdatum :

    27.04.2024


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Artificial Intelligence for Automated Marine Growth Segmentation

    Carvalho, Jodo / Leite, Pedro Nuno / Mina, João et al. | TIBKAT | 2024


    Automated Scheduling Via Artificial Intelligence

    Biefeld, Eric W. / Cooper, Lynne P. | NTRS | 1991


    MARINE DATA COLLECTION FOR MARINE ARTIFICIAL INTELLIGENCE SYSTEMS

    RAVIV DOR | Europäisches Patentamt | 2020

    Freier Zugriff

    MARINE DATA COLLECTION FOR MARINE ARTIFICIAL INTELLIGENCE SYSTEMS

    RAVIV DOR | Europäisches Patentamt | 2025

    Freier Zugriff

    MARINE DATA COLLECTION FOR MARINE ARTIFICIAL INTELLIGENCE SYSTEMS

    RAVIV DOR | Europäisches Patentamt | 2025

    Freier Zugriff