Segmental human thermoregulation models are increasingly being used to predict thermal comfort in vehicle passenger compartments. These computational models simulate the process by which the human body maintains a nearly constant core temperature. The primary output of thermoregulation models is the predicted time history of the body’s core and skin temperature, which is subsequently used as input to a model that predicts corresponding thermal sensation and comfort perceptions. The advantage of this method of predicting thermal comfort is its applicability to non-uniform and transient environments, such as the passenger compartment of an automobile. In this paper we assess the importance of modelling individual physiological differences when predicting thermal comfort using a segmental thermal model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Assessment of Modeling Individual Physiological Differences when Predicting Thermal Comfort


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Allen, Curran (Autor:in) / Mark, Hepokoski (Autor:in)


    Erscheinungsdatum :

    15.11.2012


    Format / Umfang :

    6 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Assessment of Modeling Individual Physiological Differences when Predicting Thermal Comfort

    Allen, C. / Mark, H. / Zhongguo qi che gong cheng xue hui et al. | British Library Conference Proceedings | 2013



    Assessment of Modeling Individual Physiological Differences when Predicting Thermal Comfort

    Allen, C. / Mark, H. / Zhongguo qi che gong cheng xue hui et al. | British Library Conference Proceedings | 2013


    Assessment of modeling individual physiological differences when predicting thermal comfort

    Allen,C. / Mark,H. / ThermoAnalysis,US | Kraftfahrwesen | 2012


    Modeling Individual Differences in Driver Workload Inference Using Physiological Data

    Noh, Yuna / Kim, Seyun / Jang, Young Jae et al. | Springer Verlag | 2021