With the continuous maturity and improvement of machine learning, an intelligent maritime monitoring system is constructed for the identification and tracking of dynamic fuzzy targets in maritime video images. After studying the characteristics of the Marine target environment, it is found that the imaging effect is poor due to the violent movement of the offshore imaging platform, and the field of view of the ship is relatively small, so it is difficult to extract the characteristic information of the corresponding target. Depending on these reasons above, under the CAFFE framework of deep learning, the original and improved yolov2-a network model, SVM support vector machine, HOG feature, multi-scale transformation and multi-thread technology are adopted to identify multiple targets. The fast and effective intelligent automatic detection and recognition algorithm for fuzzy image is completed, which supports a variety of standards and definition. The final research results can detect the weak floating, small boats, speedboats, cruise ships and other targets, the identification accuracy reached more than 95%, for hd video image, real-time up to 30 frames/second.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Study on the Recognition of Visible Image at Sea Based on YOLOv2-Network Model


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Yu, Xiang (Herausgeber:in) / Wang, Yifan (Autor:in) / Zhou, Haibin (Autor:in) / Zhang, Wenyi (Autor:in) / Luo, Fuyu (Autor:in)


    Erscheinungsdatum :

    30.10.2021


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Study on the Recognition of Visible Image at Sea Based on YOLOv2-Network Model

    Wang, Yifan / Zhou, Haibin / Zhang, Wenyi et al. | British Library Conference Proceedings | 2022


    Study on the Recognition of Visible Image at Sea Based on YOLOv2-Network Model

    Wang, Yifan / Zhou, Haibin / Zhang, Wenyi et al. | TIBKAT | 2022


    An Improved Convolution Neural Network for Object Detection Using YOLOv2

    Dong, Enzeng / Zhu, Yanfang / Ji, Yuehui et al. | British Library Conference Proceedings | 2018


    A vehicle real-time detection algorithm based on YOLOv2 framework

    Yang, Wei / Zhang, Ji / Wang, Hongyuan et al. | SPIE | 2018


    VISIBLE RECOGNITION APPARATUS FOR VEHICLE

    ISHIZUKA HIROMOTO | Europäisches Patentamt | 2017

    Freier Zugriff