Rail flaw detection is an essential link in the normal operation of the railway. Accurately detecting the internal damage of the rail and repairing the rail in time can find and eliminate the hidden dangers before the accident, and provide a strong security guarantee for the running of the train. In this paper, a rail defect detection method based on improved XGBoost is proposed. The Conditional Generative Adversarial Networks is used to expand the existing rail damage detection data set, then an improved XGBoost model is used to identify and classify the rail flaw detection data. Taking the crack damage type of screw hole as an example, good experimental results are obtained, which further proves the effectiveness and reliability of the scheme.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Rail Defect Detection Method Based on Improved XGBoost


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Liu, Qi (Herausgeber:in) / Liu, Xiaodong (Herausgeber:in) / Cheng, Jieren (Herausgeber:in) / Shen, Tao (Herausgeber:in) / Tian, Yuan (Herausgeber:in) / Zhang, Chongjie (Autor:in) / Zhao, Qinjun (Autor:in) / Shen, Tao (Autor:in) / Sun, Bin (Autor:in)

    Kongress:

    International Conference on Computer Engineering and Networks ; 2022 ; Haikou, China November 04, 2022 - November 07, 2022



    Erscheinungsdatum :

    20.10.2022


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Urban Rail Transit Passenger Flow Forecasting—XGBoost

    Sun, Xiaoli / Zhu, Caihua / Ma, Chaoqun | ASCE | 2022


    Urban Rail Transit Passenger Flow Forecasting - XGBoost

    Sun, Xiaoli / Zhu, Caihua / Ma, Chaoqun | TIBKAT | 2022


    Rail Fastener Defect Detection of Heavy Haul Railway Based on Improved YOLOv8

    Li, Xinman / Cao, Yuan / Wang, Feng et al. | IEEE | 2024


    Vehicle-mounted steel rail defect detection method

    ZHANG HUI / XU CHEN / FAN GUOPENG et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Filter-based feature selection for rail defect detection

    Mandriota, C. / Nitti, M. / Ancona, N. et al. | British Library Online Contents | 2004