The optimization of lithium-ion cells is becoming increasingly important. Using models that reflect the fundamental electrochemical processes is advantageous for this purpose. These models are typically computationally expensive and hard to invert using optimization methods. Additionally, deterministic optimization methods do not yield information regarding parameter uncertainties in the presence of noise. To overcome this problem, it is possible to apply Bayesian methods. This chapter provides an overview of parameter estimation. After a brief introduction to the model, parameter selection and modelling of the prior is presented. Finally, we present the results of a synthetic fitting problem solved by a parallel adaptive Markov chain Monte Carlo method. We validate the approach and compare it to realistic noisy data and a separated method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bayesian Inference for Lithium-Ion Cell Parameter Estimation


    Weitere Titelangaben:

    SpringerBriefs in Applied Sciences


    Beteiligte:
    Thaler, Alexander (Herausgeber:in) / Watzenig, Daniel (Herausgeber:in) / Scharrer, Matthias K. (Autor:in) / Haario, Heikki (Autor:in) / Watzenig, Daniel (Autor:in)


    Erscheinungsdatum :

    31.01.2014


    Format / Umfang :

    21 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Variance Reduction Estimation in Bayesian Inference

    Li, Chenzhao / Mahadevan, Sankaran | AIAA | 2017


    Bayesian Parameter Estimation of a

    Ray, Jaideep | Online Contents | 2016


    Bayesian Inference

    Prieto Tejedor, Javier | TIBKAT | 2017

    Freier Zugriff

    Bayesian Inference

    Prieto Tejedor, Javier | GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2017

    Freier Zugriff

    VARIANCE REDUCTION ESTIMATION IN BAYESIAN INFERENCE (AIAA 2017-1772)

    Li, Chenzhao / Mahadevan, Sankaran | British Library Conference Proceedings | 2017