Abstract This paper outlines the implications and challenges that modern algorithms such as neural networks may have on the process of function development for highly automated driving. In this context, an approach is presented how synthetically generated data from a simulation environment can contribute to accelerate and automate the complex process of data acquisition and labeling for these neural networks. A concept of an exemplary implementation is shown and first results of the training of a convolutional neural network using these synthetic data are presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Potential of Virtual Test Environments for the Development of Highly Automated Driving Functions Using Neural Networks


    Beteiligte:
    Pfeffer, Raphael (Autor:in) / Ukas, Patrick (Autor:in) / Sax, Eric (Autor:in)


    Erscheinungsdatum :

    01.01.2019


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Deutsch





    Potential of Training Neural Networks Using Virtual Environments

    Pfeffer, R. / Ahn, N. | British Library Conference Proceedings | 2019



    Framework for interactive testing and development of highly automated driving functions

    Kehrer, Martin / Pitz, J. / Rothermel, T. et al. | Springer Verlag | 2018