The myriad benefits of autonomous vehicles (AVs) encompassing passenger convenience, heightened safety, fuel consumption reduction, traffic decongestion, accident mitigation, cost-efficiency and heightened dependability have underpinned their burgeoning popularity. Prior to their full-scale integration into primary road networks substantial functional impediments in AVs necessitate resolution. An indispensable feature for AVs is pedestrian detection crucial for collision avoidance. Advent of automated driving is swiftly materializing owing to consistent deployment of deep learning (DL) methodologies for obstacle identification coupled with expeditious evolution of sensor and communication technologies exemplified by LiDAR systems. This study undertakes exploration of DL-based pedestrian detection algorithms with particular focus on YOLO and R CNN for purpose of processing intricate imagery akin to LiDAR sensor outputs. Recent epochs have witnessed DL approaches emerge as potentially potent avenue for augmenting real-time obstacle recognition and avoidance capabilities of autonomous vehicles. Within this scholarly exposition we undertake exhaustive examination of latest breakthroughs in pedestrian detection leveraging synergy of LiDAR and DL systems. This discourse comprehensively catalogues most pressing unresolved issues within realm of LiDAR-DL solutions furnishing compass for prospective researchers embarking on journey to forge forthcoming generation of economically viable autonomous vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Recent Advances in Pedestrian Identification Using LiDAR and Deep Learning Methods in Autonomous Vehicles


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Vasant, Pandian (Herausgeber:in) / Panchenko, Vladimir (Herausgeber:in) / Munapo, Elias (Herausgeber:in) / Weber, Gerhard-Wilhelm (Herausgeber:in) / Thomas, J. Joshua (Herausgeber:in) / Intan, Rolly (Herausgeber:in) / Shamsul Arefin, Mohammad (Herausgeber:in) / Halgatti, Anand (Autor:in) / Chethana, G. (Autor:in) / Shivaprasad, G. (Autor:in)

    Kongress:

    International Conference on Intelligent Computing & Optimization ; 2023 ; Phnom Penh, Cambodia October 27, 2023 - October 28, 2023



    Erscheinungsdatum :

    13.12.2024


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Optimized deep learning for pedestrian safety in autonomous vehicles

    Farhat, Wajdi / Rhaiem, Olfa Ben / Faiedh, Hassene et al. | Elsevier | 2025

    Freier Zugriff

    PEDESTRIAN CROSSING MANAGEMENT USING AUTONOMOUS VEHICLES

    PEREZ BARRERA OSWALDO / MORALES GERARDO | Europäisches Patentamt | 2024

    Freier Zugriff

    PEDESTRIAN CROSSING MANAGEMENT USING AUTONOMOUS VEHICLES

    BARRERA OSWALDO PEREZ / MORALES GERARDO | Europäisches Patentamt | 2024

    Freier Zugriff