In recent years, industrial automation has made it possible to improve the quality of control systems of mobile robotics to reduce time and increase accuracy in applications such as object detection for product classification. In this work, a multi-object detection for classification and packing system has been developed using image processing, machine learning, and a robotic arm model KUKA KR10. Objects are detected using an adaptive threshold binarization and morphological operations to smooth and fill regions. Machine learning algorithms have been trained and evaluated using Neural Networks and Random Forest using color in RGB space as a feature to classify objects. Finally, objects are moved from the current to the assigned position through the robotic arm. The robot movements are executed by RoboDK and Python with a controller using a local area network and the trajectories are calculated using inverse kinematics. For tests, a controlled environment with 9 objects with cube shapes of different colors has been used to detect colors and classify those of blue and red only. The results show the vision system has an accuracy of 94.50% in color detection. The time that the robotic arm takes to classify all the objects is on average 116.65 sec. at 10% of its maximum speed. Future work focuses on object detection in industrial environments using a conveyor belt and other object features to classify such as shape or size.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Multi-object Detection for Classification System Using Machine Learning and Robotic Manipulator


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Cardona, Manuel N. (Herausgeber:in) / Baca, José (Herausgeber:in) / Garcia, Cecilia (Herausgeber:in) / Carrera, Isela G. (Herausgeber:in) / Martinez, Carol (Herausgeber:in) / Jonathan, F. Pilco-Villa (Autor:in) / Paul, P. Romero-Riera (Autor:in) / Jorge, L. Hernández-Ambato (Autor:in) / Ramiro, F. Isa-Jara (Autor:in)

    Kongress:

    Proceedings of the Latin American Congress on Automation and Robotics ; 2023 ; Universidad Don Bosco, San Salvador, El Salvador November 15, 2023 - November 17, 2023



    Erscheinungsdatum :

    31.03.2024


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Controlling a robotic manipulator for packing an object

    Europäisches Patentamt | 2022

    Freier Zugriff

    Controlling a robotic manipulator for packing an object

    Europäisches Patentamt | 2023

    Freier Zugriff

    Autonomous Robotic Manipulator Software

    Cresta, Collin / Rajaram, Radhika / McQuarry, Andrew K. et al. | AIAA | 2024



    Real-time surface detection and reconstruction using a robotic manipulator

    Wang,D. / Nanyang Tech.Univ.,SG | Kraftfahrwesen | 1997