Neural networks are a foundational technology that has driven recent artificial intelligence applications. Deep learning represents a considerable breakthrough in the fifty-year history of neural networks, with convolutional neural networks (CNNs) being a prime example. CNNs are built on multilayer neural network structures and employ error backpropagation method for learning. In contrast, other neural network models, such as radial basis function (RBF) networks and extreme learning machines, which do not rely on error backpropagation, have also been developed. These alternative models perform effectively on small-scale regression tasks. The key advantage of these models is their ability to be trained with minimal computational time, thereby addressing the drawback of the error backpropagation method, which requires substantial computational time. This study examines the differences in performance between RBF networks and general multilayer neural networks that employ error backpropagation. For instance, we compare the estimation accuracy and training time of both methods when applied to gene regulatory network inference. Additionally, we present a technique to enhance estimation accuracy for this problem and explore alternative approaches to improving performance beyond deep learning methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Performance of Neural Network Models Without Backpropagation


    Weitere Titelangaben:

    Mechan. Machine Science


    Beteiligte:
    Nguyen, Duc-Nam (Herausgeber:in) / Tran, Ngoc Dang Khoa (Herausgeber:in) / Huynh, Van Tuan (Herausgeber:in) / Ono, Takahito (Herausgeber:in) / Nguyen, Van Hieu (Herausgeber:in) / Pandey, Ashok Kumar (Herausgeber:in) / Kurokawa, Hiroaki (Autor:in)

    Kongress:

    Conference on Microactuators and Micromechanisms ; 2024 ; Ho Chi Minh City, Vietnam November 09, 2024 - November 11, 2024



    Erscheinungsdatum :

    08.03.2025


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Mapping with a Backpropagation Neural Network

    Bideaux, E. / Baptiste, P. / IEEE et al. | British Library Conference Proceedings | 1994


    Fringe pattern optimisation using a backpropagation neural network

    Tipper, D. J. / Burton, D. R. / Lalor, M. J. et al. | British Library Conference Proceedings | 1996


    Backpropagation Neural Network to estimate pavement performance: dealing with measurement errors

    Amin, Shohel Reza / Amador-Jiménez, Luis E. | British Library Online Contents | 2017



    Dynamic Prediction of Traffic Flow by Using Backpropagation Neural Network

    Zhu, Z. / Yang, Z. | British Library Conference Proceedings | 1998