This paper explores a methodology that integrates the proportional integral derivative (PID) method with deep reinforcement learning (DRL). Constructing a compensatory controller using DRL to enhance the control performance of a PID controller. The proposed method is utilized in developing a fixed-wing unmanned aerial vehicle (UAV) flight controller to achieve longitudinal flight control. The compensatory controller is constructed using the Deep Deterministic Policy Gradient (DDPG) algorithm, tailored with a state-action space selection specifically designed for UAV dynamics and tracking targets. Meanwhile, the penalty term for tracking error and the sparse reward for completing the goal are introduced, and the construction scheme of the reward function is given. Simulation results demonstrate that the DRL-based compensatory controller can improve control performance when PID controller parameters are not optimally tuned to some extent, effectively eliminating pitch angle tracking overshoot and reducing setting time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Longitudinal Control and Optimization of Fixed-Wing UAV Based on Deep Reinforcement Learning


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Deng, Yimin (Herausgeber:in) / He, Haiyang (Autor:in) / Zhao, Zhengen (Autor:in) / Kong, Fei (Autor:in)

    Kongress:

    International Conference on Guidance, Navigation and Control ; 2024 ; Changsha, China August 09, 2024 - August 11, 2024



    Erscheinungsdatum :

    04.03.2025


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    ONLINE REINFORCEMENT LEARNING FOR FIXED-WING AIRCRAFT LONGITUDINAL CONTROL

    Lee, Jun H. / Kampen, Erik-Jan Van | TIBKAT | 2021




    Deep Reinforcement Learning Attitude Control of Fixed-Wing UAVs

    Zhen, Yan / Hao, Mingrui / Sun, Wendi | IEEE | 2020


    Fixed-Wing Stalled Maneuver Control Technology Based on Deep Reinforcement Learning

    Hu, Weijun / Gao, Zhiqiang / Quan, Jiale et al. | IEEE | 2022