In this paper, we explore the application of Physics-Informed Neural Networks (PINNs) in parameter identification for continuum models of manufacturing systems. Although these models are invaluable for production planning at the factory level, the reliability of model-based decision-making strategies hinges significantly on accurate parameter estimation. We emphasize the distinct differences between PINNs and conventional parameter identification methods, particularly in terms of parameter sensitivities and uncertainty quantification. Our findings reveal that the PINN-based identification framework results in more significant parameter uncertainties. Consequently, this prompts us to discuss the implications for experimental designs, system identification, and the pivotal role of smart data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Parameter Identification in Manufacturing Systems Using Physics-Informed Neural Networks


    Weitere Titelangaben:

    Lect.Notes Mechanical Engineering


    Beteiligte:
    Wagner, Achim (Herausgeber:in) / Alexopoulos, Kosmas (Herausgeber:in) / Makris, Sotiris (Herausgeber:in) / Khalid, Md Meraj (Autor:in) / Schenkendorf, René (Autor:in)

    Kongress:

    European Symposium on Artificial Intelligence in Manufacturing ; 2023 ; Kaiserslautern, Germany September 19, 2023 - September 19, 2023



    Erscheinungsdatum :

    27.06.2024


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Orbit Determination Using Physics-Informed Neural Networks

    Loshelder, Gus E. / Sood, Rohan / Su, Weihua | AIAA | 2025


    Physics-informed neural networks for identification of material properties using standing waves

    Rathod, V. T. / Ramuhalli, P. | British Library Conference Proceedings | 2022


    Estimating Invariant Sets Using Physics-Informed Neural Networks

    Tadiparthi, Venkata Vaishnav / Bhattacharya, Raktim | TIBKAT | 2022



    Estimating Invariant Sets using Physics-Informed Neural Networks

    Tadiparthi, Venkata Vaishnav / Bhattacharya, Raktim | AIAA | 2022