Unmanned aerial vehicle (UAV) swarm plays more and more important role in modern warfare, they can cooperate, communicate and share information with each other to enhance their survivability and combat ability in modern warfare. However, UAV swarm faces dynamic battlefield situation, making them hard to learning optimal cooperation and confrontation policy. To address the issues, a framework of UAV swarm cooperation and confrontation based on multi-agent deep reinforcement learning (MADRL) is proposed, and it can greatly improve training efficiency and model adaptability.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Multi-agent Deep Reinforcement Learning Framework for UAV Swarm


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Wang, Qing (Herausgeber:in) / Dong, Xiwang (Herausgeber:in) / Song, Peng (Herausgeber:in) / Zeng, Fanyu (Autor:in) / Yang, Haigen (Autor:in) / Zhao, Qian (Autor:in) / Li, Min (Autor:in)

    Kongress:

    Chinese Conference on Swarm Intelligence and Cooperative Control ; 2023 ; Nanjing, China November 24, 2023 - November 27, 2023



    Erscheinungsdatum :

    15.06.2024


    Format / Umfang :

    8 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Deep Multi Agent Reinforcement Learning Based Decentralized Swarm UAV Control Framework for Persistent Surveillance

    Kaliappan, Vishnu Kumar / Nguyen, Tuan Anh / Jeon, Sang Woo et al. | Springer Verlag | 2022


    Supporting UAVs Swarm Missions by Multi-Agent Reinforcement Learning

    Fusco, P. / Porcelli, L. / Palmieri, F. et al. | IEEE | 2025



    UAV Swarm Cooperative Target Search: A Multi-Agent Reinforcement Learning Approach

    Hou, Yukai / Zhao, Jin / Zhang, Rongqing et al. | IEEE | 2024


    Swarm Decoys Deployment for Missile Deceive using Multi-Agent Reinforcement Learning

    Bildik, Enver / Tsourdos, Antonios / Perrusquia, Adolfo et al. | IEEE | 2024