In recent years, with the rapid growth of urban population, subway has become one of the main ways of travel for urban residents. Due to the complexity of the rail transit system, the operation efficiency and safety of the subway network will face great challenges when the operation is interrupted by disturbances. Based on this situation, this paper proposes a method of urban rail transit network based on train schedule, adopts the spatial–temporal passenger flow changes of the network as the resilience index of the network, takes Chongqing Metro as an example to analyze the results, and obtains the resilience of Chongqing rail transit system under three different disruption scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Resilience Assessment of Urban Rail Transit Based on Spatial–Temporal Passenger Flow Distribution


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yadav, Sanjay (Herausgeber:in) / Wan, Meher (Herausgeber:in) / Agarwal, Ravinder (Herausgeber:in) / EL-Shimy, Mohamed (Herausgeber:in) / Zainuddin, Hidayat (Herausgeber:in) / Qu, Xiaoyan (Autor:in) / Shi, Yunzhe (Autor:in) / Zhi, Kun (Autor:in) / Wang, Xiaoxi (Autor:in)

    Kongress:

    International Conference on Information Control, Electrical Engineering and Rail Transit ; 2023 ; Shanghai, China November 17, 2023 - November 19, 2023



    Erscheinungsdatum :

    27.03.2025


    Format / Umfang :

    7 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Spatial and Temporal Distribution of Passenger Flow on Urban Rail Transit Under Train Failure Scenarios

    Deng, Xiaoke / Chen, Yao / Feng, Xujie et al. | Springer Verlag | 2024


    Learning Spatial-Temporal Dynamics for Short-Term Passenger Flow Prediction in Urban Rail Transit

    Li, Xianwang / Wu, Jinxin / He, Deqiang et al. | Transportation Research Record | 2023


    Urban Rail Transit Passenger Flow Forecasting - XGBoost

    Sun, Xiaoli / Zhu, Caihua / Ma, Chaoqun | TIBKAT | 2022


    Urban Rail Transit Passenger Flow Forecasting—XGBoost

    Sun, Xiaoli / Zhu, Caihua / Ma, Chaoqun | ASCE | 2022


    Research on Passenger Flow Distribution in Urban Rail Transit Hub Platform

    Gao, Long / Miao, Lixin / Xu, Zhongping et al. | British Library Conference Proceedings | 2020