Abstract In order to process the massive distributed data, control the agricultural facilities intelligently and improve the production efficiency, a parallel Dirichlet Process Mixture Model (DPMM) clustering method is proposed in this paper based on Spark, which is a memory computing framework. Firstly, the prediction model of skylight opening degree in greenhouse is obtained by training the agricultural environmental and facilities data. Secondly, the model is used to predict the greenhouse skylight opening degree. Thirdly, by compared experiments, both the feasibility and the efficiency of the proposed parallel clustering are verified, the prediction accuracy is also calculated. The experimental results show that the proposed approach has higher efficiency and accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Skylight Opening Prediction Method Based on Parallel Dirichlet Process Mixture Model Clustering


    Beteiligte:
    Yu, Yue (Autor:in) / Deng, Li (Autor:in) / Wang, Lili (Autor:in) / Pang, Honglin (Autor:in)


    Erscheinungsdatum :

    01.01.2017


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Translation opening skylight

    ZENG FULI / DENG GUOCHENG / LIU XINJIN | Europäisches Patentamt | 2024

    Freier Zugriff

    Anti-opening skylight structure

    QIU ZIHENG / LAN YIREN / CARIDEEP et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Automobile skylight opening device

    CHENG RENLIN / HONG YANGFU | Europäisches Patentamt | 2024

    Freier Zugriff

    SKYLIGHT OPENING/CLOSING DEVICE

    ISHIBASHI TOKUYUKI / HAYAMA KENGO | Europäisches Patentamt | 2017

    Freier Zugriff

    Single-side opening type automatic skylight

    CAI BIN / CAI CHUNHAO | Europäisches Patentamt | 2024

    Freier Zugriff