Abstract Detecting aggressive driving behavior is essential for safe transport systems as it leads to the awareness of risks of accidents. Using smartphone-equipped sensors would be promising approach considering the penetration ratio to the consumers. In this paper, we have used a large dataset of accelerometer readings collected by smartphones of drivers. The experiment was performed to explore the accident risk indexes which statistically separate the safe drivers and risky drivers. By the statistical analysis, it is found that the frequency of acceleration exceeding 2.4 m/s2, that of deceleration exceeding 1.4 m/s2, and that of left acceleration exceeding 1.1 m/s2 separate the safe drivers and risky drivers. The classifier using these three criteria achieves 70 % classification accuracy and 83 % detection accuracy of risky drivers.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of Accident Risks from Driving Behaviors


    Beteiligte:


    Erscheinungsdatum :

    01.09.2016


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Cycling Accident Risks

    Korn, Sebastian / Thiemann-Linden, Jörg | FID move | 2013

    Freier Zugriff

    E-Scooter Riding Behaviors and Risks from Naturalistic Driving Study and Crash Data Analysis

    Tian, Renran / Li, Lingxi / Chien, Stanley et al. | Springer Verlag | 2024


    Accident scenarios categorized by driving behaviors in broadside collisions at intersections

    Hiramatsu, M. / Obara, H. / Umezaki, K. et al. | British Library Conference Proceedings | 2001


    Are train accident risks increasing?

    Evan, Andrew | IuD Bahn | 2002