Collaborative environments between humans and robots are often characterized by simultaneous tasks carried out in close proximity. Recognizing robot intent in such circumstances can be crucial for operator safety and cannot be determined from robot motion alone. Projecting robot intentions on the product or the part the operator is collaborating on has the advantage that it is in the operator’s field of view and has the operator’s undivided attention. However, intention projection methods in literature use manual techniques for this purpose which can be prohibitively time consuming and unscalable to different part geometries. This problem is only more relevant in today’s manufacturing scenario that is characterized by part variety and volume. To this end, this study proposes (oriented) bounding boxes as a generalizable information construct for projecting assembly intentions that is capable of coping with different part geometries. The approach makes use of a digital thread framework for on-demand, run-time computation and retrieval of these bounding boxes from product CAD models and does so automatically without human intervention. A case-study with a real diesel engine assembly informs appreciable results and preliminary observations are discussed before presenting future directions for research.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Projecting Product-Aware Cues as Assembly Intentions for Human-Robot Collaboration


    Weitere Titelangaben:

    Lect.Notes Mechanical Engineering


    Beteiligte:
    Kim, Kyoung-Yun (Herausgeber:in) / Monplaisir, Leslie (Herausgeber:in) / Rickli, Jeremy (Herausgeber:in) / David, Joe (Autor:in) / Coatanéa, Eric (Autor:in) / Lobov, Andrei (Autor:in)

    Kongress:

    International Conference on Flexible Automation and Intelligent Manufacturing ; 2022 ; Detroit, MI, USA June 19, 2022 - June 23, 2022



    Erscheinungsdatum :

    13.10.2022


    Format / Umfang :

    14 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Emotion-Aware Control Framework for Human-Robot Collaboration

    Pupa, Andrea / Varrecchia, Raffaele / Secchi, Cristian | Springer Verlag | 2024


    Risk-Aware Task Sequencing for Human-Robot Collaboration

    Bonini, Alex / Cesta, Amedeo / Cialdea Mayer, Marta et al. | Springer Verlag | 2024


    A Safety-Aware Kinodynamic Architecture for Human-Robot Collaboration

    Pupa, Andrea / Arrfou, Mohammad / Andreoni, Gildo et al. | BASE | 2021

    Freier Zugriff

    Projecting Robot Dynamics onto Trajectories

    Pfeiffer, Friedrich | TIBKAT | 2022