In this study, we propose a trajectory data-driven network representation method, specifically leveraging directional statistics. This approach allows us to extract major intersections and define links from observed trajectories, thereby mitigating the reliance on existing network data and map matching. We apply Graph Convolutional Networks and Long-Short Term Memory models to the trajectory data-driven network representation, suggesting the potential for fast and accurate traffic state prediction. The results imply significant reduction in computational complexity while demonstrating promising prediction accuracy. Our proposed method offers a valuable approach for analyzing and modeling transportation networks using real-world trajectory data, providing insights into traffic patterns and facilitating the exploration of more efficient traffic management strategies.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Trajectory Data-Driven Network Representation for Traffic State Prediction using Deep Learning


    Weitere Titelangaben:

    Int. J. ITS Res.


    Beteiligte:
    Yasuda, Shohei (Autor:in) / Katayama, Hiroki (Autor:in) / Nakanishi, Wataru (Autor:in) / Iryo, Takamasa (Autor:in)


    Erscheinungsdatum :

    01.04.2024


    Format / Umfang :

    10 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Trajectory Data-Driven Network Representation for Traffic State Prediction using Deep Learning

    Yasuda, Shohei / Katayama, Hiroki / Nakanishi, Wataru et al. | Springer Verlag | 2024

    Freier Zugriff

    Network-Wide Vehicle Trajectory Prediction in Urban Traffic Networks using Deep Learning

    Choi, Seongjin / Yeo, Hwasoo / Kim, Jiwon | Transportation Research Record | 2018


    Bidirectional Data-Driven Trajectory Prediction for Intelligent Maritime Traffic

    Xiao, Ye / Li, Xingchen / Yao, Wen et al. | IEEE | 2023


    Real-time traffic conflict prediction at signalized intersections using vehicle trajectory data and deep learning

    Zhang, Gongquan / Jin, Jieling / Chang, Fangrong et al. | Elsevier | 2024

    Freier Zugriff