Abstract The task of building unmanned automated vehicle (UAV) control systems is developing in the direction of complication of options for interaction of UAV with the environment and approaching real life situations. A new concept of so called “smart city” was proposed and view of transportation shifted in direction to self-driving cars. In this work we developed a solution to car’s movement on road intersection. For that we made a new environment to simulate a process and applied a hierarchical reinforcement learning method to get a required behaviour from a car. Created environment could be then used as a benchmark for future algorithms on this task.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hierarchical Reinforcement Learning Approach for the Road Intersection Task


    Beteiligte:


    Erscheinungsdatum :

    17.07.2019


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Automatic driving non-signalized intersection decision generation method based on hierarchical reinforcement learning

    CHEN XUEMEI / TANG YUNHAO / HAO JIACHEN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Road intersection detection and classification using hierarchical SVM classifier

    Rebai, Karima / Achour, Nouara / Azouaoui, Ouahiba | Tema Archiv | 2014


    Loyal wingman task execution for future aerial combat: A hierarchical prior-based reinforcement learning approach

    ZHANG, Jiandong / WANG, Dinghan / YANG, Qiming et al. | Elsevier | 2024

    Freier Zugriff

    Unbalanced road intersection

    Engineering Index Backfile | 1938


    A Reinforcement Learning Approach to CAV and Intersection Control for Energy Efficiency

    Wang, Enshu / Memar, Foad Hajiaghajani / Korzelius, Steven et al. | IEEE | 2022