The control of complex chaotic systems is a challenging problem due to the rapidly changing character of chaotic strange attractors. In this paper, we have presented a controller designed utilizing deep deterministic policy gradient (DDPG) method to deal with the synchronization control problems of chaotic systems. The result shows that under the effect of deep network controller, two chaotic systems with different unknown input signals can achieve synchronization. Moreover, the algorithm is robust with the changing parameters or disturbance in chaotic systems. This algorithm can be utilized in the control of complex nonlinear chaotic systems with unknown characters of disturbances.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Synchronization Control of Nonlinear Chaotic Systems with Deep Reinforcement Learning Algorithm


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Yu, Xiang (Herausgeber:in) / Jia, Chenhui (Autor:in) / Gong, Qinghai (Autor:in) / Huang, Xu (Autor:in)


    Erscheinungsdatum :

    30.10.2021


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Nonlinear Feedback Control in Ferromagnetic Chaotic Circuit with Different Structure Synchronization

    Pang, Xia / Liu, Ling / Liu, Chongxin et al. | British Library Online Contents | 2015


    Analysis for a typical nonlinear feedback chaotic system and synchronization control

    Chen, C.-y. / Song, W.-z. | British Library Online Contents | 2002


    Powerslide Control with Deep Reinforcement Learning

    Jaumann, Florian / Schuster, Tobias / Unterreiner, Michael et al. | Springer Verlag | 2024

    Freier Zugriff